Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(37): 5309-5320, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28534509

RESUMO

Tumor recurrence in glioblastoma (GBM) is, in part, attributed to increased epithelial-to-mesenchymal transition (EMT) and enhanced tumor cell dissemination in adjacent brain parenchyma after ionizing radiation (IR). EMT is associated with aggressive behavior, increased stem-like characteristics and treatment resistance in malignancies; however, the underlying signaling mechanisms that regulate EMT are poorly understood. We identified grade-dependent p21-activated kinases 4 (PAK4) upregulation in gliomas and further determined its role in mesenchymal transition and radioresistance. IR treatment significantly elevated expression and nuclear localization of PAK4 in correlation with induction of reactive oxygen species (ROS) and mesenchymal transition in GBM cells. Stable PAK4 overexpression promoted mesenchymal transition by elevating EMT marker expression in these cells. Of note, transcription factor-DNA-binding arrays and chromatin immunoprecipitation experiments identified the formation of a novel nuclear PAK4/PPARγ complex which was recruited to the promoter of Nox1, a peroxisome proliferator-activated receptor gamma (PPARγ) target gene. In addition, IR further elevated PAK4/PPARγ complex co-recruitment to Nox1 promoter, and increased Nox1 expression and ROS levels associated with mesenchymal transition in these cells. Conversely, specific PAK4 downregulation decreased PPARγ-mediated Nox1 expression and suppressed EMT in IR-treated cells. In vivo orthotopic tumor experiments showed inhibition of growth and suppression of IR-induced PPARγ and Nox1 expression by PAK4 downregulation in tumors. Our results provide the first evidence of a novel role for PAK4 in IR-induced EMT and suggest potential therapeutic efficacy of targeting PAK4 to overcome radioresistance in gliomas.


Assuntos
Neoplasias Encefálicas/patologia , Transição Epitelial-Mesenquimal/efeitos da radiação , Glioma/patologia , NADPH Oxidases/metabolismo , PPAR gama/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Camundongos Nus , NADPH Oxidase 1 , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , PPAR gama/genética , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transfecção , Quinases Ativadas por p21/genética
2.
Oncogene ; 32(43): 5144-55, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23178493

RESUMO

Although radiotherapy improves survival in patients, glioblastoma multiformes (GBMs) tend to relapse with augmented tumor migration and invasion even after ionizing radiation (IR). Aberrant nuclear factor-κB (NF-κB) and signal transducer and activator of transcription factor 3 (Stat3) activation and interaction have been suggested in several human tumors. However, possible NF-κB/Stat3 interaction and the role of Stat3 in maintenance of NF-κB nuclear retention in GBM still remain unknown. Stat3 and NF-κB (p65) physically interact with one another in the nucleus in glioma tumors. Most importantly, glutathione S-transferase pull-down assays identified that Stat3 binds to the p65 transactivation domain and is present in the NF-κB DNA-binding complex. Irradiation significantly elevated nuclear phospho-p65/phospho-Stat3 interaction in correlation with increased intercellular adhesion molecule-1 (ICAM-1) and soluble-ICAM-1 levels, migration and invasion in human glioma xenograft cell lines 4910 and 5310. Chromatin immunopreicipitation and promoter luciferase activity assays confirmed the critical role of adjacent NF-κB (+399) and Stat3 (+479) binding motifs in the proximal intron-1 in elevating IR-induced ICAM-1 expression. Specific inhibition of Stat3 or NF-κB with Stat3.siRNA or JSH-23 severely inhibited IR-induced p65 recruitment onto ICAM-1 intron-1 and suppressed migratory properties in both the cell lines. On the other hand, Stat3C- or IR-induced Stat3 promoter recruitment was significantly decreased in p65-knockdown cells, thereby suggesting the reciprocal regulation between p65 and Stat3. We also observed a significant increase in NF-κB enrichment on ICAM-1 intron-1 and ICAM-1 transactivation in Stat3C overexpressing cells. In in vivo orthotopic experiments, suppression of tumor growth in Stat3.si+IR-treated mice was associated with the inhibition of IR-induced p-p65/p-Stat3 nuclear colocalization and ICAM-1 levels. To our knowledge, this is the first study showing the crucial role of NF-κB/Stat3 nuclear association in IR-induced ICAM-1 regulation and implies that targeting NF-κB/Stat3 interaction may have future therapeutic significance in glioma treatment.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Sequência Consenso , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioma/patologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Íntrons/genética , Camundongos , NF-kappa B/metabolismo , Invasividade Neoplásica/genética , Radiação , Fator de Transcrição STAT3/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncogene ; 32(3): 327-40, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22349830

RESUMO

Matrix metalloproteinase-2 (MMP-2) has pivotal role in the degradation of extracellular matrix, and thereby enhances the invasive, proliferative and metastatic potential in cancer. Knockdown of MMP-2 using MMP-2 small interfering RNA (pM) in human glioma xenograft cell lines 4910 and 5310 decreased cell proliferation compared with mock and pSV (scrambled vector) treatments, as determined by 5-bromo-2'-deoxyuridine incorporation, Ki-67 staining and clonogenic survival assay. Cytokine array and western blotting using tumor-conditioned media displayed modulated secretory levels of various cytokines including granulocyte-macrophage colony-stimulating factor, interleukin-6 (IL-6), IL-8, IL-10, tumor necrosis factor-α, angiogenin, vascular endothelial growth factor and PDGF-BB in MMP-2 knockdown cells. Further, cDNA PCR array indicated potential negative regulation of Janus kinase/Stat3 pathway in pM-treated cells. Mechanistically, MMP-2 is involved in complex formation with α5 and ß1 integrins and MMP-2 downregulation inhibited α5ß1 integrin-mediated Stat3 phosphorylation and nuclear translocation. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed inhibited Stat3 DNA-binding activity and recruitment at CyclinD1 and c-Myc promoters in pM-treated cells. In individual experiments, IL-6 or siRNA-insensitive MMP-2 overexpression by pM-FL-A141G counteracted and restored the pM-inhibited Stat3 DNA-binding activity, suggesting IL-6/Stat3 signaling suppression in pM-treated 4910 and 5310 cells. MMP-2/α5ß1 binding is enhanced in human recombinant MMP-2 treatments, resulting in elevated Stat3 DNA-binding activity and recruitment on CyclinD1 and c-Myc promoters. Activation of α5ß1 signaling by Fibronectin adhesion elevated pM-inhibited Stat3 phosphorylation whereas blocking α5ß1 abrogated constitutive Stat3 activation. In vivo experiments with orthotropic tumor model revealed the decreased tumor size in pM treatment compared with mock or pSV treatments. Immunofluorescence studies in tumor sections corroborated our in vitro findings evidencing high expression and co-localization of MMP-2/α5ß1, which is decreased upon pM treatment along with significantly reduced IL-6, phospho-Stat3, CyclinD1, c-Myc, Ki-67 and PCNA expression levels. Our data indicate the possible role of MMP-2/α5ß1 interaction in the regulation of α5ß1-mediated IL-6/Stat3 signaling activation and signifies the therapeutic potential of blocking MMP-2/α5ß1 interaction in glioma treatment.


Assuntos
Glioma/patologia , Integrina alfa5beta1/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Regulação para Baixo/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Glioma/metabolismo , Humanos , Metaloproteinase 2 da Matriz/deficiência , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/farmacologia , Camundongos , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos
4.
Cell Death Dis ; 3: e445, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23254288

RESUMO

Gliomas display anoikis resistance, enhanced invasion in to the adjacent brain parenchyma and eventually recur despite using the standard therapies. Our studies on increased anoikis sensitization in matrix metalloproteinase-2 (MMP-2)-knockdown 4910 and 5310 human glioma xenograft cells were interestingly correlated with p21-activated kinase 4 (PAK4) inhibition, prompting us to further investigate the role of PAK4 in glioma. Here, we report the PAK4 upregulation in positive correlation with increasing glioma pathological grades. The siRNA-mediated PAK4 knockdown elevated anoikis, and inhibited invasion and migration by downregulating MMP-2, αvß3-integrin and phospho-epidermal growth factor receptor (phospho-EGFR). The cDNA-PCR arrays revealed a transcriptional suppression of essential proteins involved in cell proliferation and adhesion in PAK4-knockdown cells. Most importantly, glutathione S-transferase pull-down assays demonstrated the MMP-2 as a new PAK4-interacting protein which binds to PAK4 kinase domain. Individual EGFR/ErbB2 inhibitor and αvß3 antibody treatments in PAK4si-treated cells indicated the regulation of αvß3/EGFR survival signaling by PAK4. Overexpression of PAK4 significantly reversed the MMP2si-induced cell death in both cell lines. Codepletion of PAK4 and MMP-2 resulted in robust anoikis-mediated cell death, and severely inhibited invasive and migratory properties in these cells. PAK4si inhibited in vivo tumor growth in nude mice by inhibiting MMP-2, ß3-integrin and phospho-EGFR levels in tumors. Our findings indicate a physical association between PAK4 and MMP-2, and suggest the future therapeutic potential of PAK4/MMP-2 dual targeting in glioma treatment.


Assuntos
Anoikis , Movimento Celular , Glioma/metabolismo , Glioma/patologia , Metaloproteinase 2 da Matriz/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Glioma/genética , Glioma/fisiopatologia , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Ligação Proteica , Transdução de Sinais , Transplante Heterólogo , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...